10 вскрытие и разбуривание глава продуктивных пластов

10 ВСКРЫТИЕ И РАЗБУРИВАНИЕ ГЛАВА ПРОДУКТИВНЫХ ПЛАСТОВ

Эффективность разработки нефтяных и газовых месторождений во многом определяется состоянием призабойной зоны скважин в период заканчивания.

В результате физико-химического и физико-механического воздействия при заканчивании скважин изменяются коллекторские свойства пород в призабойной зоне.

Физико-химическое воздействие на призабойную зону обусловлено взаимодействием флюида пласта и фильтрата бурового и цементного растворов, а также действием адсорбционных, капиллярных и диффузионноосмотических сил.

Физико-механическое воздействие на продуктивный горизонт оказывают следующие факторы:

разгрузка горного массива в результате разбуривания пласта; изменяющееся противодавление столба бурового раствора (впоследствии изменяющееся давление столба цементного раствора); фильтрация бурового (и цементного) раствора; изменяющийся температурный режим в скважине;

гидродинамическое и механическое воздействие на породы в разбуриваемом пласте движущегося бурового инструмента;

гидродинамические эффекты (гидроудары, понижение давления и др.) в стволе и призабойной зоне в процессе цементирования и освоения скважины и т.д.

10.1. РАЗБУРИВ АНИЕ ПРОДУКТИВНОГО ПЛАСТА

В процессе вскрытия и разбуривания продуктивного пласта необходимо уделять особое внимание технологическим приемам, снижающим отрицательное воздействие технологических процессов на приствольную зону продуктивного пласта.

В соответствии с едиными правилами буровых работ столб бурового раствора в скважине должен создавать давление, превышающее пластовое на 1,5 — 3,5 МПа (в зависимости от глубины). В реальных условиях давление на продуктивные пласты существенно больше из-за переутяжеления бурового раствора, гидравлических сопротивлений при его движении в кольцевом пространстве, а также в результате движения вниз бурового инструмента.

Не изучен вопрос изменения проницаемости продуктивного пласта при его краевой разгрузке с учетом перемещения частиц (песка, обломков породы), хотя известно, что создание всестороннего гидравлического давления (через диафрагму) понижает проницаемость образца, а снятие давления ее повышает. Однако попеременные нагружение и разгрузка образца могут нарушить его сплошность.

Нечетко определены понятия качества работ в бурении и при закан-чивании скважин. Проблема качества строительства скважин (особенно горизонтальных) для многих производственных объединений РФ стоит очень остро. Интегральная характеристика качества скважин — получаемый полезный эффект, т.е. добыча определенного количества углеводородов на 1 руб. затрат при строительстве скважин. За последние 10 лет она сократилась более чем в 2 раза. Это объясняется не только необходимостью освоения новых, более труднодоступных и сложно построенных месторождений. Результаты анализа показывают, что при условии полного использования возможностей продуктивных пластов (если бы добывающие способности скважин не ограничивались возможностями применяемой технологии их строительства) добыча нефти и газа на одну скважину была бы в 2 — 4 раза больше в зависимости от условий. Это один из главных путей увеличения эффективности нефтегазодобывающей промышленности, альтернатива экстенсивному пути ее развития, экономически неоправданному освоению многих новых малопродуктивных месторождений.

Решение проблемы качества строительства скважин сдерживается в первую очередь следующими факторами.

1.    Отсутствуют обоснованные методы оценки и управления качеством. Действительно, критерию обоснованности — наличию взаимно однозначного соответствия между результатами оценки качества и получаемым полезным эффектом — не удовлетворяет ни одна из известных методик. А если нет обоснованных методов оценки качества, то нет и обоснованного управления качеством.

2.    Регламенты и проекты на строительство скважин составляются без учета требований к качеству скважин, без обоснования условий, при которых они будут выполнять свое назначение. Например, в проектах отсутствуют оценка качества технологии вскрытия пласта и освоения скважины, обоснование допустимых нагрузок на крепь, т.е. уже на стадии проектирования закладываются все предпосылки некачественного строительства скважин.

3.    При действующем экономическом механизме отсутствует заинтересованность буровых предприятий в повышении качества, во внедрении новых технических и технологических средств. Буровым предприятиям выгодны ускорение и снижение фактической себестоимости строительства скважин по сравнению с проектными нормативами даже в ущерб качеству, лишь бы был достигнут его минимальный уровень, необходимый для сдачи скважин.

4.    Буровые предприятия недостаточно оснащены необходимыми техническими средствами, материалами, оборудованием, устройствами контроля, программами и т.д.

Успешное решение проблемы качества требует комплексного подхода, т.е. реализации широкого комплекса взаимоувязанных, разработанных на единой методической основе организационных, экономических и технических мероприятий.

10.2. ТЕХНОЛОГИЧЕСКИЕ ФАКТОРЫ,

ОБЕСПЕЧИВАЮЩИЕ БУРЕНИЕ И ВСКРЫТИЕ ПРОДУКТИВНОГО ПЛАСТА

Технология вскрытия продуктивного пласта в процессе бурения практически не отличается от технологии бурения всего ствола скважины, поэтому, как правило, физико-механические свойства продуктивного пласта не учитывают. Исключение составляет выбор типа бурового раствора (но не во всех случаях).

Кроме ухудшения естественного состояния продуктивного пласта за счет проникновения фильтрата бурового раствора и в некоторых случаях твердой фазы на скорость бурения влияет ряд технологических факторов, определяемых свойствами бурового раствора: плотность, вязкость, показатели фильтрации, содержание и состав твердой фазы. Эти показатели могут способствовать увеличению механической скорости проходки (фильтрация) и одновременно снижать проницаемость призабойной зоны или способствовать уменьшению скорости проходки и улучшать состояние призабойной зоны. Вместе с тем основные показатели технологических свойств буровых растворов взаимосвязаны.

В бурении предъявляют повышенные требования к выбору бурового раствора, в первую очередь с позиции предупреждения осложнений и аварий, затем учитывают обеспечение наилучших условий работы породоразрушающего инструмента и, к сожалению, очень редко уделяют внимание максимальной возможности сохранения естественного состояния продуктивного объекта.

10.3. ИЗМЕНЕНИЕ ПРОНИЦАЕМОСТИ

ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА.

БУРОВЫЕ РАСТВОРЫ ДЛЯ ЗАКАНЧИВАНИЯ СКВАЖИН

Проблема качественного вскрытия продуктивного пласта включает большой круг вопросов, хотя до настоящего времени понимается довольно ограниченно — главным образом уделяется внимание буровым растворам, минимально снижающим проницаемость призабойной зоны. Это наиболее доступный для изменения фактор — обработка буровых (позднее тампонажных) растворов с целью снизить или довести даже до нулевого значения водоотдачу буровых (и цементных) растворов.

При бурении в продуктивном коллекторе в связи с нарушением напряженного состояния пород в приствольной зоне, проникновением фильтрата бурового (и цементного) раствора в пласт, взаимодействием с пластовой газожидкостной смесью и горной породой происходят сложные физико-химические процессы. Фильтрат, проникая в продуктивный пласт, резко уменьшает проницаемость последнего для нефти и газа, что приводит к ряду необратимых процессов. Частично проникает в пласт и твердая фаза буровых растворов; при гидроразрывах пластов значительное количество бурового раствора поступает в пласт, блокируя продвижение флюида к скважине.

Существуют следующие основные факторы загрязнения пласта:

реакция глин, содержащихся в нем, с водой, которая поступает из бурового раствора, с последующим набуханием глин;

кольматация пор пласта твердыми частицами глинистого раствора.

Очевидно, это только часть факторов, которые определяют падение проницаемости призабойной зоны пласта (ПЗП). Если принять к сведению, что на площади образца из обычного песчаника, равной 6,5 см2, находится до 3000 пор, которые в известной степени определяют проницаемость, то становится понятным, насколько чувствительна эта поверхность к загрязнению.

Зная основные причины снижения проницаемости ПЗП в естественных условиях, можно если и не предотвратить их влияние, то хотя бы максимально снизить их негативный эффект.

Все известные буровые растворы в той или иной степени отрицательно влияют на ПЗП. Их влияние идет в направлении снижения проницаемости ПЗП за счет прохождения фильтрата (разбухание глинистых включений, образование закупоривающего поры осадка при контактировании с пластовыми водами) в пласт; проникновения в поры пласта твердой фазы; блокирования порового пространства эмульсионными растворами; действия адсорбционных сил, удерживающих воду в порах, и др.

Буровой раствор с высокой водоотдачей нецелесообразно использовать при освоении скважин и добыче нефти и газа, так как он снижает естественную продуктивность пласта, и для ее восстановления могут потребоваться перфораторы специального типа или несколько кислотных обработок.

На продуктивность скважин наибольшее влияние оказывает состояние проницаемости призабойной зоны пласта непосредственно около стенки скважины. Проницаемость этой зоны ухудшается практически при любых условиях завершения строительства скважин и зависит от ряда факторов: состава бурового раствора при бурении (глины, воды, примесей и реагентов раствора);

противодавления на пласт от столба бурового раствора; длительности пребывания продуктивного пласта под давлением столба бурового раствора;

состава цементного раствора;

глубины и плотности перфорации обсадной колонны; длительности пребывания пласта под раствором после перфорации; способа вызова притока флюида из пласта и освоения скважин. Установлено, что состав и свойства буровых растворов, применяемых для вскрытия продуктивных пластов, должны удовлетворять следующим требованиям.

1.    Фильтрат бурового и цементного растворов должен быть таким, чтобы при проникновении его в призабойную зону пласта не происходило набухания глинистого материала, соле- и пенообразования в пористой среде горных пород.

2.    Гранулометрический состав твердой фазы бурового и цементного растворов должен соответствовать структуре порового пространства, т.е. для предотвращения глубокой кольматации содержание частиц, диаметр которых больше на 30 % размера поровых каналов или трещин, должно быть не менее 5 % от общего объема твердой фазы промывочного агента.

3.    Поверхностное натяжение на границе раздела фильтрат — пласто-вый флюид должно быть минимальным; водоотдача в забойных условиях должна быть минимальной, а плотность и реологические параметры — такими, чтобы дифференциальное давление при разбуривании продуктивной толщи было близким к нулю, хотя для промывки скважин при вскрытии продуктивных пластов, к сожалению, используют главным образом глинистые буровые растворы, обработанные или не обработанные химическими реагентами. Причем технология обработки этих растворов химическими реагентами определяется требованиями только безаварийной проходки ствола скважины, а не качественным вскрытием продуктивного пласта. Сроки освоения и продуктивность скважин, пробуренных в идентичных условиях, могут быть различными и в значительной степени зависят от качества работ по вскрытию пластов.

Если исходить из условий максимального сохранения природного состояния коллектора, то продуктивный пласт необходимо вскрывать при условии депрессии или равновесия между пластовым и забойным давлениями. Однако в настоящее время отсутствуют технические средства, которые могли бы надежно обеспечить такие условия проводки скважин (вращающиеся превенторы, дистанционно управляемые дроссели, сепараторы бурового раствора), поэтому на практике вынуждены вскрывать пласты в условиях репрессии. Как фактор репрессия имеет превалирующее значение: от нее зависят все остальные процессы взаимодействия пласта с буровым раствором. Репрессия также является причиной изменения естественной раскрытости трещин и влияет на степень деформации пород в присква-жинной зоне.

Значения давления на забое и степень его влияния на призабойную зону во многом определяются характером и интенсивностью проводимых в скважине операций. Наибольшие гидродинамические давления возникают в скважине при восстановлении циркуляции бурового раствора. Несмотря на то что гидродинамические давления при восстановлении циркуляции действуют на пласт кратковременно, в пределах 3 — 5 мин, значения забойного давления при этом могут достигать 75 — 80 % полного горного давления, что иногда вызывает гидроразрыв пласта. Причинами роста гидродинамических нагрузок на пласт являются также высокие скорости спускоподъемных операций. Гидродинамическая репрессия на пласты при этом может возрастать до 3 — 9 МПа.

Химическим составом бурового раствора определяется в основном интенсивность развития вторичных процессов, возникающих при контакте фильтрата с нефтью, газом, остаточной водой и породой коллектора. Совокупность этих процессов приводит к возрастанию газогидродинамических сопротивлений в зоне проникновения фильтрата при фильтрации нефти на разных этапах освоения и эксплуатации скважины. Увеличение гидравлических сопротивлений происходит в результате проявления молекулярно-поверхностных свойств системы нефть — газ — порода — остаточная вода — фильтрат и изменения структуры порового пространства породы.

На стадии вызова притока из пласта прирост гидравлических сопротивлений при фильтрации нефти через зону проникновения главным образом определяется особенностями двухфазной фильтрации. Значение этих дополнительных сопротивлений зависит от многих факторов и в целом оценивается фазовой проницаемостью для флюида при совместном течении нефти с фильтратом через пористую среду с измененной структурой поровых каналов. Изменение структуры порового пространства в зоне проникновения может быть обусловлено взаимодействием фильтрата как с минеральными компонентами породы (набухание глин, химическое преобразование), так и с остаточной водой (возможность образования нерастворимых осадков).

Степень загрязнения поровых каналов твердой фазой бурового раствора в наибольшей мере определяется размерами каналов, их структурой, дисперсностью и концентрацией твердой фазы в растворе, а также значениями водоотдачи бурового раствора и перепада давления в системе скважина — пласт.

Влияние зоны кольматации на приток флюида к стволу скважины изменяется в широких пределах. Наибольшее отрицательное влияние зоны кольматации отмечается в скважинах с открытым забоем. В скважинах с закрытым забоем это явление в основном нейтрализуется перфорацией. В последнем случае следует оценивать влияние зоны кольматации, формирующейся на стенках перфорационных каналов.

Проникновение в пласт коллоидных и субколлоидных частиц, а также макромолекул органических соединений сопровождается их адсорбцией в поровом пространстве нефтенасыщенных пород. Эти частицы адсорбируются, как правило, на границах раздела нефть (газ) — фильтрат и, если поверхности раздела неподвижны, теряют свободу перемещения. При наличии в нефти большого количества асфальтосмолистых веществ проникающие в пласт коллоидные и субколлоидные частицы адсорбируются на поверхности раздела фаз совместно с асфальтенами и смолами и образуют плотные межфазные пленки. В газонасыщенных пластах эти частицы адсорбируются на стенках поровых каналов. Поскольку указанные межфазные пленки и адсорбционные слои уменьшают сечение поровых каналов и практически не растворяются в нефти, следует предупредить их формирование путем введения в буровой раствор синтетических ПАВ.

Степень загрязнения порового пространства породы-коллектора продуктами взаимодействия солей остаточной воды с химическими реагентами, поступающими в пласт с фильтратом, определяется наличием в воде осадкообразующих катионов. Образующиеся нерастворимые соединения в зависимости от характера смачиваемости их поверхности скапливаются в водной или нефтяной фазе, адсорбируясь чаще всего на границах раздела нефть — фильтрат.

Качество вскрытия продуктивных пластов следует повышать двумя путями:

выбором соответствующего типа бурового раствора для конкретного месторождения (пласта), обладающего определенными геолого-физически-ми свойствами породы-коллектора, слагающего пласт, и физико-химическими свойствами пластовых флюидов с обязательным учетом степени возможных изменений петрографических свойств породы после вскрытия и условий фильтрации нефти или (и) газа через зону проникновения;

выбором технологических режимов вскрытия и промывки скважины и проведения спускоподъемных операций, обеспечивающих минимальные размеры зоны проникновения компонентов бурового раствора в пласт.

Буровой раствор, предназначенный для вскрытия продуктивного пласта, перфорационных и других операций в скважине, при которых неизбежно его контактирование с компонентами пластовой системы, должен отвечать следующим основным требованиям:

обладать способностью быстро формировать на стенках скважины практически непроницаемую фильтрационную корку, препятствующую проникновению фильтрата в пласт;

иметь такой состав жидкой фазы, который при практикуемых в настоящее время значениях депрессии, создаваемых при освоении скважины, позволял бы уже в первые часы работы скважины ликвидировать без заметных остаточных явлений последствия проникновения фильтрата в призабойную зону.

Твердая фаза бурового раствора или ее большая часть должна полностью растворяться в кислотах (нефти), что позволит удалять ее со стенок скважины и закольматированной зоны пласта при освоении. Гранулометрический состав твердой фазы должен обеспечивать минимальное количество проникающего раствора в трещины (поры) пласта за счет образования закупоривающих тампонов на входе в трещину.

Требования к технологии вскрытия сводятся к тому, чтобы режим вскрытия, промывка скважины и спускоподъемные операции выбирались с учетом обеспечения минимальной зоны проникновения фильтрата бурового раствора, не превышающей глубины перфорационных каналов.

Выбор бурового раствора для вскрытия осуществляется для каждого типа пород-коллекторов, различающихся основными признаками и условиями залегания. Для этой цели все известные в настоящее время типы пород-коллекторов разделены на четыре классификационные категории, в каждой из которых сгруппированы породы-коллекторы, обладающие примерно одинаковой реакцией на технологические воздействия. В качестве критерия разделения пород-коллекторов на отдельные категории использованы геологические и технологические факторы, которые раскрывают условия проявления и возможность прогнозной оценки вида, интенсивности и масштаба развития процесса взаимодействия пород пласта с буровым раствором, а также последствий этого процесса.

Лабораторными исследованиями, проведенными на естественных и искусственных кернах в России и за рубежом, установлено, что проникающая в призабойную зону пласта вода в определенных условиях снижает естественную фазовую проницаемость коллектора для нефти более чем на 50 %, которая очень медленно восстанавливается или не восстанавливается совсем (табл. 10.1). На коэффициент восстановления проницаемости существенно влияет не только состав воды, применяемой при вскрытии пласта, но и скорость фильтрации (градиент давления). Восстановление проницаемости керна при разных условиях находится в пределах 45 — 85 %. Добавка к буровому раствору реагентов, улучшающих его механические свойства, может больше снизить естественную проницаемость коллектора. Влияние различных буровых растворов на начальную проницаемость пористой среды отражают данные табл. 10.2. Таким образом, как показывают лабораторные исследования, проведенные в России и за рубежом, применение буровых растворов на водной основе, как правило, приводит к существенному необратимому снижению проницаемости коллекторов.

В табл. 10.3 приведены данные о снижении коэффициента продуктивности скважин на Майкопском газоконденсатном месторождении после закачки в них бурового раствора.

Рассмотренные примеры убедительно показывают, что проникновение в пласт фильтрата и бурового раствора отрицательно влияет на его коллекторские свойства, в результате чего удлиняются сроки освоения скважин, снижается их производительность, уменьшается коэффициент нефтеотдачи, а на некоторых площадях по этой причине могут быть пропущены отдельные продуктивные пласты и пропластки.

Т аблица 10.1

Восстановление проницаемости керна

Порода

Начальная неф-тепроницае-мость, мкм2

Вода

Коэффициент

восстановления

проницаемости,

%

Исследователи

Искусственный пес

0,6

Пресная

53

Жигач и Паус

чаник (без примеси

1,0

62

(МИНГ)

глины)

1,4

68

2,0

74

Девонский песчаник

0,4

«

42

В.А. Шевалдин

Ромашкинского ме

1,2

46

(ТатНИИ)

сторождения

2,0

50

0,4

Пластовая (де

86

1,2

вонская)

84

2,0

82

Юрский песчаник

0,01-0,2

Любая

55

Н.Р. Рабинович

Таллинского место

(ВНИИКРнефть)

рождения

Буровой раствор

Коэффициент восстановления начальной проницаемости, %

Вода

59,4

Буровой раствор без добавки реагентов

71,7

Буровой раствор +10 % УЩР

47,5

Буровой раствор +1 % КМЦ

59,8

Пена

94,2

Раствор на нефтяной основе

95,0

Т аблица 10.3

Уменьшение коэффициента продуктивности

Номер

скважины

Продуктивный горизонт

Время, сут

Коэффициент продуктивности, м3/мПа

К1/К2

пребывания бурового раствора в скважине

эксплуатации до исследования

до закачки раствора К1

после закачки раствора К2

7

I

48

10

683

340

2,0

17

II

1435

182

323

126

2,6

21

II

1498

73

2638

542

4,8

66

II

77

2

1157

902

2,4

14

III

1756

220

1210

355

3,4

18

III

1007

13

805

204

3,9

23

III

55

2

1200

165

7,3

24

III

84

24

2321

859

2,7

30

III

69

113

1575

541

2,9

Большие осложнения возникают при вскрытии продуктивных пластов в скважинах глубиной 4000 — 5000 м. На большой глубине трудно регулировать давление на забое вследствие высоких пластового давления и температуры, а также периодического проникновения в буровой раствор газа. Положение усугубляется еще тем, что приходится прибегать к утяжелению бурового раствора до 1,8 —2,2 г/см2. В этих условиях, чтобы избежать возможных проявлений пласта, его вскрытие проводят при весьма большом превышении давления на забое над пластовым. Это влечет за собой разрыв пласта и уход в него большого количества раствора, особенно при часто повторяющихся спускоподъемных операциях, когда наблюдается резкое изменение гидродинамического давления на стенки скважин.

О чрезмерном превышении (в %) давления в стволе скважин в процессе вскрытия над пластовым можно судить по следующим фактическим данным:

Самарская область.........................

................... 18-48

Украина............................................

................... 50-80

Азербайджан...................................

................... 60-120

Вследствие этого глубина проникновения фильтрата в продуктивный пласт может быть весьма большой. По данным специальных исследований, она составляла на нефтегазовых месторождениях Азербайджана 1,4 —2,5 м, на Майкопском газоконденсатном месторождении 0,5 — 3,0 м, на Самотлор-ском месторождении 6 — 37 м и т.д.

Наиболее глубокое проникновение фильтрата и твердой фазы бурового раствора отмечается в процессе вскрытия трещинных коллекторов.

Цементирование эксплуатационной колонны может также отрицательно влиять на проницаемость призабойной зоны, особенно когда пластовое давление ниже или выше гидростатического. В первом случае происходит проникновение в пласт не только фильтрата цементного раствора, но и собственно раствора, так как при цементировании эксплуатационной колонны почти во всех случаях применяют цементный раствор плотностью 1,8—1,85 г/см3. Конструкция скважины в большинстве случаев подчиняется задачам успешной проходки ствола скважины, хотя и не всегда отвечает условиям сохранения проницаемости призабойной зоны пласта в процессе его вскрытия.

Анализ состояния вскрытия нефтяных и газовых пластов при разведочном и эксплуатационном бурении, систематические исследования влияния различных буровых растворов на проницаемость пористой среды, проведенные в России и за рубежом, показывают, что продуктивные пласты необходимо вскрывать со строгим учетом геолого-физических особенностей коллектора и физико-химической характеристики насыщающих его жидкостей.

ОСОБЕННОСТИ ЗАКАНЧИВАНИЯ СКВАЖИН

НА ГАЗОВЫХ И ГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЯХ

Последовательность операций, проводимых при заканчивании скважин на газовых и газоконденсатных месторождениях, принципиально не отличается от выполнения аналогичных работ на нефтяных месторождениях. Однако оптимальная технология вскрытия пласта имеет свои особенности. Например, при вскрытии газового пласта на Уренгойском месторождении, представленного кварцевыми песками и песчаниками с малым содержанием глинистого цемента, нецелесообразно, как считают специалисты, использовать растворы на углеводородной основе (РУО) или на основе специальных химических реагентов.

На этом и некоторых других газовых и газоконденсатных месторождениях Западной Сибири экономически обосновано применение существующей технологии вскрытия продуктивного пласта с использованием бурового раствора, обработанного химическими реагентами, которые предотвращают снижение естественной проницаемости пласта. В то же время, когда, применяя существующую технологию, не удается получить промышленный приток газа, необходимо искать растворы новых типов. Примером могут служить условия вскрытия продуктивного пласта на Астраханском газоконденсатном месторождении, где газовая залежь представлена коллекторами порово-трещинного типа большой мощности.

В течение нескольких лет продуктивные объекты на Астраханском месторождении вскрываются с промывкой глинистым хлоркальциевым раствором плотностью 1,75 г/см3. В результате существенно снижается проницаемость призабойной зоны продуктивного пласта, затрудняется освоение скважин и требуется неоднократное проведение мероприятий по интенсификации притока газа. Конструкцию скважин в зоне многопластовой залежи следует выбирать исходя из условия достижения максимального охвата дренированием каждого продуктивного объекта и всей залежи в целом. Эту задачу можно выполнить в результате раздельного опробования каждого объекта разработки.

Опыт разработки газовых и газоконденсатных месторождений Северного Кавказа, Средней Азии и других регионов свидетельствует о том, что в тех случаях, когда при вскрытии многопластовых продуктивных залежей не учитываются особенности отдельных эксплуатационных объектов, конечный коэффициент газоотдачи составляет немного более 50 %. Так, в начальный период разработки Ленинградского газоконденсатного месторождения во всех скважинах осуществлялось вскрытие всего газонасыщенного интервала единым фильтром. В результате одновременной эксплуатации сразу всех продуктивных пачек планируемый объем добычи газа и конденсата обеспечивался меньшим числом скважин. Однако за сравнительно короткий период произошло опережающее обводнение контурными водами второй, наиболее продуктивной пачки, обладающей наилучшими коллекторскими свойствами и наибольшими запасами газа и конденсата. Несмотря на принятые мероприятия, направленные на повышение конечной газоотдачи (бурение новых скважин с комбинированной системой вскрытия промежуточного горизонта, возврат на нижележащие продуктивные пачки и др.), коэффициент газоотдачи обводненной зоны второй продуктивной пачки составил всего 58 %.

Аналогичные условия наблюдаются при эксплуатации скважин на Майкопском и Кущевском газоконденсатных месторождениях, где текущий коэффициент газоотдачи обводнившихся продуктивных пачек составляет

0,44-0,57 и 0,79 соответственно.

Требованиям качественного вскрытия газовых пластов с коэффициентом аномальности пластового давления ниже 0,8 в большой степени удовлетворяет применение газообразных и пенных агентов для очистки скважины от выбуренной породы. В качестве газообразных агентов применяют воздух, дымовые газы от специального дымогенератора, азот, природный и углекислый газы. Несмотря на бесспорный положительный эффект, получаемый при использовании газообразных агентов и заключающийся в сохранении естественной проницаемости призабойной зоны пласта и повышении дебитов скважин, этот способ все еще не находит широкого применения на практике.

Внедрению способа вскрытия пласта с продувкой препятствуют недостатки, присущие каждому газообразному агенту. Например, при использовании воздуха в стволе скважины образуются взрывоопасные смеси, приводящие к тяжелым авариям. Использование азота или углекислого газа сдерживается из-за их относительно высокой стоимости и отсутствия специального оборудования. Применение природного газа сопряжено с опасностью его возгорания и неизбежностью значительных потерь газа. И наконец, независимо от типа используемого газообразного агента сложившаяся технология имеет существенный недостаток — не ограничивается верхний предел скорости восходящего потока газообразного агента. Это приводит к чрезмерному износу бурильной и обсадной колонн, а также к разрушению устьевого оборудования.

СевКавНИИГазом совместно с ПО «СевКавГазпром» разработаны технология и технологическое оборудование для вскрытия газоносного пласта в условиях аномально низких пластовых давлений (АНПД) с продувкой забоя выхлопными газами ДВС, обеспечивающими равновесие давления в системе скважина — пласт. Использование выхлопных газов ДВС исключает образование взрывоопасной смеси в скважине, а технология предполагает регулирование скорости восходящего потока, что предупреждает изнашивание устьевого оборудования.

Для вскрытия газоносного пласта с применением выхлопных газов ДВС необходимо следующее технологическое оборудование:

компрессорные установки с подачей 30 — 50 м /мин на рабочее давление 3,0 МПа;

устьевые вращающиеся герметизаторы на рабочее давление 5,0 — 10,0 МПа.

Для охлаждения и очистки выхлопных газов можно использовать аппараты воздушного охлаждения типа АВГ-П-160 РР и масловлагоотделители типа ВО-1.

Не находит широкого применения в бурении нефтяных и газовых скважин также и технология вскрытия пласта с промывкой пенами. Основными факторами, тормозящими использование пен при вскрытии продуктивных пластов с аномально низким давлением, являются:

большие затраты энергии и материалов на приготовление и разрушение пенного промывочного агента, а также на его очистку от выбуренной породы;

потребность в дополнительном специальном технологическом оборудовании;

недостаточная изученность процессов, происходящих в скважине и призабойной зоне пласта при промывке пеной.

СевКавНИИГазом разработана новая технология вскрытия пласта на истощенных газовых месторождениях промывкой скважины трехфазной пеной по замкнутой герметизированной системе циркуляции. Эта технология обеспечивает многократное использование минимально необходимого для промывки скважины объема трехфазной пены при условии высокого качества вскрытия продуктивного пласта с аномально низким давлением.

Применение данной технологии позволяет:

вскрывать пласты с давлением, равным 0,1 —0,3 гидростатического, без существенных поглощений, обеспечивая высокое качество проводимых работ;

существенно экономить энергию и материалы на процессы промывки скважины;

исключить аварийные ситуации при газопроявлениях;

не допускать загрязнения окружающей среды;

увеличить добычу газа за счет ввода в эксплуатацию новых или бездействующих скважин, в которых вскрыть пласт с промывкой глинистым раствором, водой или различными эмульсиями не представляется возможным.

Другим перспективным направлением совершенствования технологии проводки скважин и вскрытия продуктивных пластов является бурение с регулированием дифференциального давления в системе скважина — пласт. Суть этого метода заключается в том, что процесс бурения осуществляется при так называемом сбалансированном давлении или равновесии между пластовым и гидродинамическим давлениями в скважине. Для этого изучены условия формирования залежей с АВПД и построены карты их распространения по опорным горизонтам в ряде районов страны.

Методы равновесного бурения с регулированием дифференциального давления в системе скважина — пласт базируются на оперативном контроле за пластовым давлением и на корректировке плотности бурового раствора. Появляется необходимость частых остановок (перерывов) в бурении для определения пластового давления (по значению устьевого давления) и изменения плотности бурового раствора.

В СевКавНИИГазе разработана технология вскрытия продуктивного пласта на равновесии путем регулирования дифференциального давления в условиях герметизированной системы циркуляции, что дает возможность существенно упростить технологическую схему промывки и плавно регулировать давление промывочного агента в системе.

Специфическая особенность герметизированной системы циркуляции — наличие буферного компенсатора, с помощью которого буровой раствор подают от устья к приему насосов по трубопроводу под давлением параллельно открытой системе циркуляции. Это позволяет оперативно применять различные модификации технологии равновесного бурения:

бурение на равновесии — проведение полного цикла буровых работ (спуск, подъем, бурение) при рз = рпл;

бурение с избыточным давлением — проведение полного цикла буровых работ при рз > рпл;

бурение с использованием двух растворов, когда равенство рз = рпл соблюдается только при бурении, а спускоподъемные операции осуществляются после замены раствора в скважине на более тяжелый;

бурение с загерметизированным устьем, когда давление на забое скважины в статическом состоянии меньше пластового (т.е. рз < рпл).

При этом буровые работы выполняют с применением комплекса герметизирующих устройств на устье скважины.

В промысловой практике имеется немало примеров, когда скважины, показавшие хорошие признаки нефтеносности в процессе бурения, после цементирования эксплуатационной колонны при освоении дают очень низкий приток из продуктивного объекта. Применение в этих условиях облегченных тампонажных растворов плотностью 1,5—1,54 г/см3 с пониженной фильтратоотдачей (добавки фильтроперлита 5 %) позволило при освоении обеспечить увеличение дебита в 3 раза по сравнению с дебитом скважин, цементировавшихся по старой технологии.

Тампонажные растворы, применяемые для цементирования продуктивных пластов, представляют собой сложные физико-химические системы, которые несовместимы с буровыми растворами, предшествующими их применению. Взаимодействие компонентов тампонажного раствора с остатками бурового в трещинах, порах пласта, как правило, приводит к увеличению закупоривающего эффекта и усложнению задачи восстановления проницаемости призабойной зоны пласта при освоении и вводе скважины в эксплуатацию.

Отечественная и зарубежная практика показала, что основные способы, направленные на предотвращение отрицательных последствий цементирования колонн для свойств продуктивных объектов, следующие: снижение репрессии на пласт, уменьшение фильтратоотдачи тампонажного раствора и достижение наибольшего физико-химического соответствия между фильтратом тампонажного раствора и компонентами коллектора, составом пород пласта и пластовых флюидов.

Практически этого можно достичь в результате осуществления следующих мероприятий:

ограничение высоты подъема тампонажного раствора в одну ступень путем применения специальных муфт при определенной скорости подъема раствора за колонной и уменьшении показателей его структурно-механических свойств, что позволяет снизить репрессию на пласты;

снижение плотности тампонажного раствора (по всей высоте зоны цементирования или выше кровли продуктивного пласта) путем применения облегчающих добавок или аэрацией;

уменьшение фильтратоотдачи тампонажных растворов путем добавок полимеров или применения растворов на углеводородной основе, что позволяет снизить эффект закупоривания фильтрационных каналов в коллекторе вследствие гидратации его глинистых компонентов, выпадения солевых осадков и проявления поверхностных сил;

крепление продуктивного пласта без цементирования с использованием гравийных фильтров, обсадки продуктивного пласта перфорированной колонной-фильтром (хвостовиком), цементированием с установкой пакера в кровле продуктивного пласта и закачкой тампонажного раствора за колонну через спецмуфту выше пакера и др.;

оставление необсаженного (открытого) ствола в зоне продуктивного пласта со спуском и цементированием эксплуатационной колонны до кровли продуктивного пласта.

Целесообразность применения того или иного мероприятия из перечисленных выше определяется геолого-физическими особенностями месторождений и устанавливается специальными исследованиями, которые требуют своего развития.

При наличии зон АНПД в разрезах с целью обеспечить поднятие цементного раствора до проектной высоты используют газонаполненные тампонажные системы, полученные путем подачи воздуха компрессором или эжектором-аэратором в поток закачиваемого в скважину тампонажного раствора или с применением рецептур цементных растворов, включающих газогенерирующие реагенты.

Трехфазные газонаполненные тампонажные системы обладают низкой плотностью, повышенной блокирующей способностью за счет наличия газовой фазы при снижении нагрузок лежащего выше столба вследствие «зависания», обеспечивают поддержание внутрипорового давления на уровне 90 % условно-гидростатического, получение малопроницаемого прочного цементного камня с повышенными адгезионными свойствами.

Аэрированные тампонажные суспензии представляют собой устойчивую дисперсию (газа, жидкости, твердой фазы), полученную путем аэрирования тампонажного раствора, который приготовляют из портландцемента, затворенного водой. В качестве пенообразователей следует применять поверхностно-активные вещества, например неонол АФ9-12, превоцелл марок NG-10, NG-12, образующих устойчивую пену в среде тампонажного раствора.

В качестве замедлителей загустевания цементного раствора рекомендуется использовать НТФ и ОЭДФ. Количество замедлителя подбирают исходя из конкретных условий.

Степень аэрации (отношение объема воздуха, приведенного к нормальным условиям, к объему тампонажного раствора) выбирают из условия получения средней плотности столба тампонажного раствора, обеспечивающей подъем его до проектной глубины без осложнений. Требуемая степень аэрации достигается подбором соотношения расхода жидкой и газовой фаз в зависимости от имеющихся технических средств. Аэрацию проводят компрессорами высокого давления или компрессором буровой установки в совокупности с эжектором-аэратором. Перед блоком или к блоку манифольдов подсоединят гидравлический активатор, а в нагнетательной линии после блока манифольдов размещают струйный диспергагор-смеси-тель. Пенообразователь подают цементировочным агрегатом через гидроактиватор в блок манифольдов.

Основные контролируемые параметры аэрированных суспензий следующие: кратность пены, которая должна быть больше или равна 3; устойчивость (отношение объема цементного камня к объему аэрированного тампонажного раствора), которая должна быть равна 1 (100 %); растекае-мость приблизительно 14 см; плотность аэрированного раствора не более 0,2 г/см3; время загустевания, определяемое на цементных растворах с добавками пенообразователей и других реагентов без принудительной аэрации (к полученному времени загустевания добавляют 20 мин — поправка на замедляющий эффект аэрации).

Процесс цементирования скважин газонаполненными тампонажными материалами включает применение в качестве буферной жидкости трехфазной пенной системы с содержанием твердой фазы портландцемента. Такая система в общем удовлетворяет основному назначению буферной жидкости — предотвращать смешение промывочной жидкости и цементного раствора.

Рекомендуемый диапазон добавок цемента для получения стабильной буферной жидкости составляет 20 — 35 %. Эта система имеет запас свободной жидкости, способной участвовать в формировании новой структурированной и подвижной системы с глинистой фазой промывочной жидкости и компонентами глинистой корки. Придание буферной жидкости химически активных свойств при контактировании с глинистой коркой позволяет помимо выполнения разделительной функции достичь эффекта разрушения глинистой корки и выноса ее части из зоны цементирования. Используют буферную жидкость объемом от 3 до 6 м3.

Физические особенности добываемого газа (низкая вязкость, малая плотность) обусловливают повышенную вероятность каналообразования в затрубном пространстве в период ожидания затвердения цементного раствора (ОЗЦ).

ОСОБЕННОСТИ ЗАКАНЧИВАНИЯ ГОРИЗОНТАЛЬНЫХ СКВАЖИН

Выбор варианта заканчивания горизонтальных скважин определяется типом пластов, их однородностью, прочностью, характером флюидов и другими факторами, поэтому основная задача (и основная трудность) состоит в получении этих данных.

В зарубежной практике опробованы разные варианты заканчивания горизонтальных скважин с использованием перфорированной потайной колонны: горизонтальный дренирующий участок не обсажен; потайная колонна полностью зацементирована; предварительно перфорированная потайная колонна частично зацементирована или оснащена внешними пакерами.

В случае одного дренирующего коллектора, который обнажается горизонтальным участком ствола скважины, и если геомеханическая характеристика пласта позволяет, неповрежденный горизонтальный ствол не цементируется, но может быть обсажен предварительно перфорированной потайной колонной. В противном случае при наличии трещин, пересекающих несколько пластов, газовых шапок, водоносных горизонтов, в проекты закладывают обычно один из следующих методов.

1.    Использование внешних пакеров, которыми весь вскрытый ствол может быть разбит на несколько секторов, что позволяет стимулировать выбираемую зону, изолировать зону, заполненную водой или газом из газовой шапки. Цементирование не исключается при наличии пакеров.

2.    В случае необходимости проведения гидроразрыва хвостовик цементируется (в том числе при наличии специальных пакеров). Цементирование (с пакерами или без них) необходимо для изоляции верхней части пласта (горизонтальное напластование), в который нежелательно поступление газа из газовой шапки (или поступает верхняя вода). При изоляции газовой шапки рекомендуется частичное цементирование горизонтального участка, при гидроразрыве пласта требуется цементировать весь участок.

Вскрытие продуктивного пласта следует осуществлять с использованием специальных жидкостей, требования к которым должны быть более жесткими, чем в случае вскрытия продуктивного пласта вертикальным стволом скважины. Такое требование обусловлено тем, что вскрытие (образование дренажного канала) пласта проводится на значительном участке и, следовательно, загрязнение пласта тоже может быть весьма существенным (более длительным по времени).

Спуск сплошной (или потайной) колонны при современных техникотехнологических возможностях сложен. Но важнейшим вопросом является ее цементирование, поэтому наибольшее внимание должно быть уделено специальным (по всей вероятности, жестким) центраторам.

Цементирование обсадной колонны (лайнера) должно обеспечить равномерное вытеснение бурового раствора цементным из заколонного пространства. В зарубежной практике удовлетворительное цементирование колонны достигается применением стабилизаторов и жестких центраторов, в отечественной — жестких центраторов.

Если основные технологические параметры процесса цементирования следует уточнять по мере накопления опыта применительно к различным площадям и геолого-физическим условиям, то тампонажные растворы подбирают конкретно к каждой скважине по известным методикам. Но общими и обязательными для всех условий должны быть седиментационная устойчивость, нулевая водоотдача. Применительно к цементированию горизонтальных стволов скважин необходимо радикально изменить требования к цементному раствору. После цементирования в горизонтальном дренажном канале не должна скапливаться вода; объем тампонажного раствора не должен уменьшаться (при переходе раствора в гелеобразное состояние); тампонажный раствор должен быть равноплотным по диаметру; скоплений бурового раствора в горизонтальном стволе не должно быть во избежание его обезвоживания и образования каналов при контакте с твердеющим цементным раствором — камнем.

Однако при проведении горизонтального канала в однородном пласте жесткие требования к тампонажному раствору и технологии цементирования могут быть распространены на краевые участки; в случае фациально-неоднородного пласта, наличии трещинообразований, перемежаемости требования должны выдерживаться по всем правилам технических условий.

Необходимо применять буферные разделительные жидкости между вытесняемым буровым и вытесняющим тампонажным растворами. Объем буферной жидкости и ее характеристика должны быть такими, чтобы обеспечить вытеснение бурового раствора. Если ее применение чем-либо ограничено, то следует увеличивать объем тампонажного раствора (для тех же целей).

Важнейший этап работы — контроль качества цементировочных работ; приборы, спускаемые в скважину, необходимо центрировать (используют специальные прокладки под приборы в обсадной колонне, но их установка не должна помешать сигналу датчика).

Перфорацию обсадной колонны и цементного кольца следует проводить с использованием специальных жидкостей и перфораторов, спускаемых на НКТ.

В зарубежной практике (с 2000 г. в США 40 % нефти и газа планируется добывать с помощью горизонтальных скважин) обычно заканчивают скважины традиционным способом с использованием жидкостей глушения, которые нередко ухудшают коллекторские свойства пласта в приствольной зоне. Применяют также сбалансированное бурение. Основная цель таких операций — защита продуктивных пластов от загрязнения скважин скважинными жидкостями во время бурения и заканчивания. Вторичная цель — предупреждение чрезмерных потерь таких жидкостей в пласт. Эта технология предполагает ряд специальных мер, которые будут рассмотрены далее.

В США большое внимание уделяют сохранению коллекторских свойств продуктивных пластов при их вскрытии. Решающее значение при этом имеет выбор бурового раствора при заканчивании скважин. Буровые растворы специально приготовляют для вскрытия продуктивного пласта, при цементировании, перфорации, возбуждении притока, а также для создания столба жидкости над пакером и перед ним.

С учетом этого специальные буровые растворы подразделяют на две большие группы.

1.    Жидкости, не созданные специально для заканчивания скважин, но применяемые в процессе этих работ ввиду соответствия их свойств требованиям, предъявляемым к определенной операции, или вследствие доведения этих свойств до требуемого уровня специальной обработкой.

2.    Жидкости, специально созданные для заканчивания скважин, в частности для конкретного вида работ. Они имеют низкую водоотдачу; компоненты таких жидкостей растворимы в нефти, кислоте, воде либо способны биологически разлагаться (любое загрязнение в результате их применения может быть устранено). Сюда можно отнести рассолы со специальной системой утяжеления или со специально подобранными наполнителями, выполняющими в процессе заканчивания скважин определенные функции, а также меловые эмульсии и стабильные пены.

Углеводородные растворы нашли широкое применение в практике заканчивания скважин, они обеспечивают их максимальную естественную производительность. Наибольший интерес среди этих растворов представляют растворы на нефтяной основе (РНО), в которых в качестве дисперсионной среды используется нефть и которые в качестве дисперсной фазы могут содержать воду. Из РНО нашли применение два различных типа: собственно растворы на нефтяной основе и обращенные эмульсии. В обращенных эмульсиях содержится 20 — 75 % воды, которая позволяет регулировать реологические и фильтрационные свойства. Для улучшения реологических и фильтрационных свойств этих растворов при бурении в условиях действия высоких температур вводят модифицированные глины. Обращенные эмульсии имеют нулевую статическую водоотдачу. При обратном отмыве керна качественные эмульсионные растворы обеспечивают 90 — 98%-ный возврат к начальной скорости фильтрации.

В растворах на нефтяной основе может содержаться до 20 % воды. Для поддержания фильтрационных и реологических свойств в этих растворах используют материалы с коллоидными системами (окисленный на воздухе битум).

Широкие возможности для применения в области заканчивания скважин имеют меловые эмульсии. Эмульсии готовят на основе нефти, а ее стабилизация достигается с помощью тонко измельченного мела. Меловые эмульсии легко растворяются в кислоте, имеют малую водоотдачу. Их применяют при вскрытии карбонатных пластов (в которых почти всегда проводят кислотные обработки), для разбуривания водовосприимчивых песчаников и т.д.

В США при заканчивании скважин для вскрытия продуктивных горизонтов с низким пластовым давлением широко используют пены.

Методы вскрытия продуктивных отложений для эффективного сохранения коллекторских свойств продуктивных горизонтов должны отвечать ряду основных требований:

формировать в проницаемых стенках ствола гидроизолирующий слой, фильтрационные и прочностные характеристики которого практически исключают гидравлическую связь всех вскрываемых бурением пластов со скважиной как при положительных, так и при отрицательных забойных дифференциальных давлениях, изменяющихся в технологически допустимых пределах;

обеспечивать долговременную изоляцию непродуктивных горизонтов на стадии подготовки ствола к креплению;

создавать условия для эффективного восстановления гидравлической связи нефтегазовых пластов со скважиной на стадиях освоения и эксплуатации.

На основании изложенного можно обосновывать следующие показатели для сравнительной оценки качества вскрытия продуктивных отложений:

1)    коэффициент полной приемистости интервала продуктивных отложений;

2)    градиент давления испытания ствола на гидромеханическую прочность;

3)    максимальные дифференциальные забойные давления при вскрытии продуктивных отложений;

4)    сравнительные геолого-физические характеристики и параметры пластов продуктивных отложений (толщина пластов и гидроизолирующих перемычек, пластовые давления и температура, удельный дебит, коэффициенты продуктивности и гидропроводности, ПЗП, скин-фактор, обводненность продукции);

5) показатели качества разобщения продуктивных горизонтов в зако-лонном пространстве от водоносных пластов (однородность цементного камня по плотности и сплошность по высоте, отсутствие или наличие зако-лонных перетоков, притока чуждых пластовых флюидов к фильтру скважины).

Указанные показатели обеспечивают получение корректных сравнительных оценок качества вскрытия продуктивных отложений на основе сопоставимости геолого-технических условий заканчивания, освоения и эксплуатации скважин и учета влияния технологических факторов на коллекторские свойства призабойной и удаленной зон нефтегазовых пластов.

10.4. ОПРОБОВАНИЕ ПЛАСТОВ И ИСПЫТАНИЕ СКВАЖИН В ПРОЦЕССЕ БУРЕНИЯ

МЕТОДЫ ОПРОБОВАНИЯ И ИСПЫТАНИЯ

Для оценки промышленной нефтегазоносности вскрытого скважиной геологического разреза проводят специальные исследования, объем и методы которых зависят от целевого назначения скважины. Эти исследования направлены на решение следующих задач: определение нефтегазоносности отдельных интервалов и предварительную оценку их промышленной значимости, получение достоверных данных для подсчета запасов и последующего проектирования системы разработки месторождений, определение эксплуатационных характеристик пласта.

Для оценки продуктивности разреза применяют косвенные и прямые методы. Косвенные методы позволяют получить характеристики, косвенным образом указывающие на присутствие нефти или газа в исследованном интервале. К косвенным методам относят оперативный геологический контроль в процессе бурения и геофизические методы исследования в скважине. Прямые методы базируются на непосредственных свидетельствах о присутствии нефти или газа (отбор пробы, получение притока и т.д.). Прямые методы требуют вызова притока нефти или газа из пласта.

Наиболее полную информацию об исследуемых нефтегазовых объектах можно получить при использовании прямых методов, т.е. основанных на вызове притока из пласта. В задачу исследования прямым методом входят такие вопросы, как выявление возможности получения притока нефти или газа из исследуемого объекта, отбор проб пластовой жидкости для изучения ее состава и свойств, установления соотношения компонентов в пластовом флюиде, оценка возможного дебита из исследуемого объекта, измерение пластового давления, получение исходных данных для первоначальной оценки коллекторских свойств объекта, вскрытого скважиной.

В группе прямых методов выделяют стационарные и экспресс-методы. Стационарные методы предполагают, что исследование проводят на установившемся режиме фильтрации. Например, метод пробной эксплуатации предусматривает наблюдения в течение длительного времени (до 1 мес и более), при использовании метода установившихся отборов наблюдение и измерения проводят на нескольких режимах, доведенных до стабилизации притока, позволяют получить характеристику пласта и эксплуатационных возможностей скважины.

Исследования по экспресс-методу требуют значительно меньше времени. В его основе лежит контроль за восстановлением давления в ограниченном объеме, сообщающемся с продуктивным пластом после вызова притока из него.

Иногда для малодебитных скважин применяют экспресс-метод исследования на приток, когда его контролируют по восстановлению предварительно сниженного уровня жидкости в скважине.

По технологии, применяемым техническим средствам и объему получаемой информации исследования по экспресс-методу можно подразделить на испытание и опробование.

Задача опробования — вызвать приток флюида из пласта, отобрать его пробу для анализа, определить свободный дебит скважины. При проведении испытаний ставятся более широкие задачи.

Практикуют два метода испытания скважин: «снизу вверх» и «сверху вниз».

При использовании метода «снизу вверх» скважину доводят до проектной глубины, закрепляют обсадной колонной и цементной оболочкой за ней. Испытания начинают с нижнего объекта, для чего обсадную колонну против этого пласта перфорируют, осуществляют вызов притока, отбирают пробы пластовой жидкости и проводят необходимые измерения. После завершения испытания нижнего объекта устанавливают цементный мост или резиновый тампон выше перфорированного участка, рассчитанный на перепад давления до 25 МПа. Затем перфорируют обсадную колонну напротив выше расположенного объекта, испытывают его и переходят к следующему объекту, перемещаясь вверх. Отсюда и название метода «снизу вверх».

Этот метод продолжают применять в настоящее время, хотя он имеет существенные недостатки: загрязняются в открытом стволе пройденные при добуривании скважины пласты; возможны искажение результатов исследования, а иногда и пропуски продуктивных горизонтов с низким пластовым давлением; необходимо спускать и цементировать обсадную колонну для разобщения опробуемых объектов.

Для устранения отмеченных недостатков созданы специальные измерительные инструменты, которые позволяют опробовать и испытать каждый объект в открытом стволе скважины сразу же после вскрытия. С созданием таких инструментов появился новый способ, получивший название метода «сверху вниз».

Для его реализации используют различные глубинные инструменты, которые по конструктивному исполнению, особенностям применения и назначению можно условно разделить на три типа: 1) пластоиспытатели, спускаемые в скважину на колонне труб; 2) аппараты, сбрасываемые внутрь колонны бурильных труб сразу после вскрытия бурением намеченного объекта; 3) аппараты, спускаемые в скважину на каротажном кабеле.

Наиболее полную информацию об исследуемом пласте получают с помощью пластоиспытателя на колонне труб. Аппараты второго и третьего типов позволяют выполнить лишь опробование пласта, поэтому их обычно называют опробователями.

Сбрасываемый внутрь бурильной колонны опробователь позволяет вызывать приток сразу после вскрытия продуктивного пласта и отбирать пробу пластовой жидкости. Для этого над долотом устанавливают специальное пакерующее устройство, которое при промывке скважины не препятствует циркуляции бурового раствора по затрубному кольцевому зазору (рис. 10.1, этап Г).

После спуска опробователя в пакерующее устройство открываются каналы, по которым буровой раствор под давлением подается под паке-рующий элемент и вызывает его расширение вплоть до полного контакта со стенками ствола скважины и перекрытия кольцевого зазора; происходит изоляция призабойной зоны скважины от остального ствола (рис. 10.1, этап ГГ). С повышением давления внутри бурильной колонны открывается клапан в опробователе и давление в подпакерной зоне резко понижается, в результате чего пластовый флюид проникает в скважину (рис. 10.1, этап ГГГ) и попадает в опробователь. Одновременно регистрирующим манометром записывается кривая восстановления давления.

По истечении времени, отведенного для опробования пласта, давление в бурильной колонне снижают, в результате чего закрывается клапан в опробователе и пакер постепенно возвращается в исходное положение. Оп-


Рис. 10.1. Этапы (I-III) работы опробователя, сбрасываемого внутрь бурильной колонны:

1 — шлипсовая головка; 2 — грунтоноска; 3 — седло запорного устройства; 4 — впускное окно; 5 — отсекатель;

6    —    пакерующее    устройство;    7    —

нижнее седло опробователя; 8 — впускной клапан; 9 — долото робователь захватывают овершотом и поднимают с помощью каната на поверхность. Иногда его извлекают на поверхность вместе с бурильной колонной.

Опробователь, спускаемый на каротажном кабеле, применяют тогда, когда необходимо исследовать пласт на отдельных уровнях, например, для оценки изменения проницаемости пласта по мощности, для определения положения границы пластовой воды и нефти и т.п.

После подъема бурильной колонны опробователь спускают в скважину на заданную глубину (рис. 10.2, этап I). С поверхности по кабелю электрическим импульсом подают команду на выдвижение упорного башмака. Он прижимает к ограниченному участку стенки ствола скважины уплотнительную подушку, которая изолирует небольшую площадь открытой поверхности пласта. По команде с поверхности взрывают кумулятивный заряд, и в изолированной части пласта образуется канал, по которому пластовый флюид поступает в нижнюю емкость опробователя (рис. 10.2,


Рис. 10.2. Этапы (I-III) работы опробователя на кабеле:

1 — верхний заряд и заглушка; 2 — дифференциальный возвратный поршень; 3 — нижний заряд и заглушка; 4 — прижимная лапа; 5 — герметизирующая накладка; 6    —

кумулятивный заряд; 7 — впускной клапан; 8 — баллон этап II). Регистрирующий манометр записывает восстановление давления в емкости по мере ее заполнения. Гидравлическая система опробователя в конце исследования закрывает входной клапан емкости. В результате отобранная проба запирается, избыточное давление под прижимной лапой снижается, и под действием пружины она возвращается в транспортное положение (рис. 10.2, этап III).

ИСПЫТАТЕЛИ ПЛАСТОВ

Из экспресс-методов, применяемых при исследованиях в скважине, наиболее распространен способ с использованием испытателя пластов, спускаемого на колонне труб.

Его применяют для испытания объектов сразу после их вскрытия, и поэтому при соблюдении правильной технологии испытания он позволяет получить наиболее достоверную оценку незагрязненного буровым раствором пласта.

Испытатель пластов применяют и в обсаженных скважинах, в частности, при испытании пластов с низким пластовым давлением, для очистки призабойной зоны, для испытания обсадных колонн на герметичность и выявления в них участков нарушения герметичности и при других работах, когда в ограниченном объеме ствола скважины надо создать депрессию.

Современный пластоиспытатель включает инструменты, аппараты и приборы, скомпонованные воедино для выполнения функций, необходимых при испытании пласта и проведении измерений. Такой испытатель называют комплектом испытательных инструментов (КИИ). Применяющиеся в настоящее время комплекты пластоиспытателей разработаны совместно Грозненским и Уфимским нефтяными научно-исследовательскими институтами и носят название КИИ — ГрозУфНИИ. Имеется несколько типоразмеров пластоиспытателей, которые охватывают весь диапазон диаметров скважин от 76 до 295,3 мм (табл. 10.4).

В состав пластоиспытателя входят следующие основные узлы (рис. 10.3): циркуляционный клапан, переводник с глубинным регистрирующим манометром, запорный поворотный клапан (ЗПК), гидравлический испыта-

Таблица 10.4

Техническая характеристика комплектов испытательных инструментов

Показатель

Тип

пластоиспытателя

КИИ-65

КИИ-95

КИИ-146

Наружный диаметр корпуса, мм

65

95

146

Диапазон диаметров скважин, мм

76- 109

109- 150

190-295

Общая длина комплекта, м

20,0

21,6

17,8

Общая масса комплекта, кг Допустимая нагрузка, кН:

300

910

1200

сжатия

150

300

600

растяжения

100

250

400

Допустимое внешнее давление, МПа Максимальная температура окружающей среды, °С, для комплекта с резиной:

80

80

70

обычной

130

130

130

термостойкой

200

200

200

1 бурильные трубы; 2 — циркуляционный клапан; 3 — глубинные манометры; 4 — запорный поворотный клапан; 5 — гидравлический испытатель пластов; 6 — ясс; 7 — безопасный переводник; 8 — пакер; 9 — фильтр; 10 — хвостовик; 11 — опорный башмак (пята)

m

W


тель пластов (ИПГ), ясс, безопасный переводник, пакер, фильтр-хвостовик, опорный башмак.

Гидравлический испытатель пластов — главное звено пластоиспытателя — оснащен уравнительным и приемным клапанами. Уравнительный клапан в открытом состоянии обеспечивает гидравлическую связь между подпакерным и надпакерным пространствами, уравнивая в них гидростатическое давление, а также служит для пропуска жидкости при спуске и подъеме КИИ во избежание эффекта поршневания. По истечении определенного промежутка времени после закрытия уравнительного клапана срабатывает специальное гидравлическое реле времени, управляющее приемным клапаном. Он открывает доступ пластовому флюиду в бурильную колонну над пластоис-пытателем. Реле времени срабатывает под воздействием сжимающей нагрузки, возникающей при частичной разгрузке бурильной колонны на забой (на 60—120 кН). По окончании испытания под действием растягивающего усилия приемный клапан закрывается. Запорный поворотный клапан закрывается путем вращения бурильной колонны с поверхности и служит для перекрытия проходного канала в бурильную колонну. После его закрытия регистрируется процесс восстановления давления в подпакерном пространстве. Имеются одно- и многоцикловые запорно-поворотные клапаны.

I

ш


i


J

Ш


я


.1


ЯГ


10


п

3


Циркуляционный клапан, установленный над запорным поворотным клапаном, служит для возобновления циркуляции бурового раствора по стволу скважины. Для его срабатывания необходимо, чтобы давление внутри бурильной колонны на 7—10 МПа превышало внешнее гидростатическое давление.

В комплект КИИ входят также несколько глубинных манометров, которые помещают в приборном патрубке и устанавливают в других местах для записи изменения давления. Одновременное использование нескольких манометров позволяет контролировать достоверность полученной информации об изменении давления и надежность срабатывания систем пластоиспытателя. Проверку осуществляют сопоставлением диаграмм, записанных в разных пунктах. Применяют регистрирующие манометры поршневого или геликсного типа. Поршневые манометры используют чаще, хотя по сроку службы и точности измерения они уступают геликсным. Вместе с манометром иногда применяют регистрирующий термометр.

Пластоиспытателями управляют с поверхности. В соответствии с командами пластоиспытатель выполняет следующие функции: изолирует интервал ствола скважины напротив исследуемого объекта от остальной его части, вызывает приток пластового флюида созданием депрессии на пласт, отбирает пробы пластового флюида для исследования, регистрирует восстановление давления в подпакерной зоне.

Изменения давления регистрируются автоматически в течение всего

периода нахождения пластоиспытателя в скважине в пределах ресурса рабочего времени манометра.

Описанный выше тип пластоиспытателя КИИ — ГрозУфНИИ работает следующим образом.

Под действием усилия сжатия за счет разгрузки на забой части веса колонны бурильных труб пакерующее устройство изолирует подлежащий испытанию объект от остальных проницаемых зон в стволе скважины и от воздействия гидростатического столба жидкости; на этой стадии надпакер-ная и подпакерная зоны сообщаются между собой (рис. 10.4, этап I).

По истечении определенного времени срабатывает гидравлическое реле, и закрывается уравнительный клапан (рис. 10.4, этап II), а затем открывается приемный клапан ИПГ (рис. 10.4, этап III), через который подпакер-ное пространство сообщается с внутренней полостью бурильных труб, частично заполненных жидкостью. Давление под пакером резко уменьшается до значения гидростатического давления столба жидкости в колонне труб, и на исследуемый пласт действует депрессия, приводящая к притоку пластового флюида внутрь бурильной колонны. При интенсивном притоке на конце отводного трубопровода на устье отмечается выход воздуха, жидкости, заполняющей колонну, и даже пластового флюида. Вращением колонны труб с поверхности закрывают запорный поворотный клапан и записывают кривую восстановления давления. На конечном этапе дают натяжение инструмента, под воздействием которого закрывается приемный клапан ИПГ, и некоторое время спустя открывается уравнительный клапан, восстанавливающий гидравлическую связь подпакерной зоны с надпакерной. Давление в этих зонах выравнивается, и под влиянием натяжения пакер восстанавливает свою форму. В некоторых случаях для его

I    II    III

Рис. 10.4. Этапы (I-III) работы клапанов ИПГ:

1 — уравнительные каналы; 2 — уплотнитель уравнительного клапана; 3, 5 — гильзы соответственно уравнительного и приемного клапанов; 4 — приемный клапан

освобождения приходится использовать ясс. В случае прихвата пакера или компоновки фильтра пластоиспытатель развинчивают по безопасному переводнику.

На поверхности пластоиспытатель разбирают и извлекают диаграммы регистрирующих приборов.

Пластоиспытателя КИИ — ГрозУфНИИ имеют недостатки: они одноциклового действия, и повторное испытание возможно только после подъема и спуска инструмента; некоторые узлы недостаточно надежны; область надежной работы пластоиспытателя ограничивается давлениями не более 40 МПа.

Для повышения достоверности испытания целесообразно проведение повторных циклов и сопоставлениях их результатов. Для проведения многоцикловых испытаний разработаны пластоиспытатели серии МИГ (табл. 10.5).

Многоцикловой гидравлический испытатель пластов позволяет при однократном спуске проводить несколько полных циклов испытаний пласта. Каждый цикл включает две основные операции: вызов притока из пласта и регистрацию восстановления давления.

В комплект МИГ входит многоцикловой испытатель пластов ИПМ-2 конструкции СевКавНИПИнефти (рис. 10.5).

Благодаря действию на запорную гильзу избыточной гидростатической силы, фиксирующей ее в нижнем положении, появляется возможность многократного открытия и закрытия запорного клапана при закрытом уравнительном клапане.

При открытом приемном клапане подпакерное пространство сообщается с внутренней полостью колонны труб, в результате чего создается депрессия на пласт и происходит вызов притока (нижнее положение штока).

При подъеме штока до вхождения приемного клапана внутрь запорной гильзы поступление жидкости в бурильную колонну прекращается, и давление в подпакер-ной зоне восстанавливается. Чтобы избежать преждевременного открытия уравнительного клапана, над ИПМ-2 устанавливают телескопический раздвижной механизм со свободным ходом 1,5 м. Его гидравлическая неуравновешенность ниже, чем у запорной гильзы, и после закрытия приемного клапана запорная гильза остается закрытой до тех пор, пока не будет «выбран» свободный ход в раздвижном механизме.

Многоцикловой испытатель оснащен двухцикловым запорным поворотным клапаном, регистрирующим манометром геликсного типа МГИ-1, яссом закрытого типа,

Рис. 10.5. Многоцикловои испытатель пластов ИПМ-2:

1 — сменный штуцер; 2 — подвижное уплотнение; 3 — тормозной поршень; 4 — калибровочный канал; 5, 6 — промежуточная и запорная гильзы; 7 — приемный клапан

Показатель

Тип пластоиспытателя

МИГ-127

МИГ-146

Наружный диаметр корпуса, мм Диапазон диаметров скважин, мм Общая длина комплекта, м Общая масса комплекта, кг Допустимая нагрузка, кН: сжатия растяжения Допустимое внешнее давление, МПа

Максимальная температура окружающей среды, °С, для комплекта с резиной: обычной термостойкой

127 195-243 27,2 5 680

1 250 600 100

130

200

146 190-295 27,4 5 440

1 500 700

130

200

для которого растягивающее усилие не зависит от гидростатического давления в стволе скважины, а также безопасным переводником.

Для надежной изоляции устанавливают два пакера усовершенствованной конструкции ПЦР-2 с распределителем давления. В конструкции пластоиспытателя МИГ остаются еще некоторые недостатки. Так, отдельные узлы (циркуляционный клапан, испытатель пластов и др.) довольно сложные, многие узлы после каждого спуска в скважину необходимо подвергать разборке и обязательной ревизии.

Конструкции скважин. фильтры 11 глава  »
Библиотека »