Физические основы добычи нефти и газа
ФИЗИЧЕСКИЕ ОСНОВЫ ДОБЫЧИ НЕФТИ И ГАЗА
1.1. Газонефтяное месторождение
Естественное скопление нефти (газа) в недрах называется нефтяной (газовой) залежью. Совокупность залежей, расположенных на одном участке (районе) суши или моря, образует нефтяное (газовое) месторождение. Часто залежи нефти имеют газовые шапки, а газовые - нефтяные оторочки. В этих случаях тип залежи или месторождения определяется по значительности запасов одного из этих компонентов.
Существуют две теории происхождения нефти - органическая и неорганическая. Более принята теория органического образования нефти и газа, по которой остатки животных и растительности, разлагаясь в недрах Земли под действием высоких температур и давления, образовали углеводороды - составляющие нефти и газа.
Нефть (газ) совместно с водой содержатся в разветвленной системе пор, пустот, поровых каналов, трещин, каверн между отдельными зернами или агрегатами зерен породы, которая называется коллектор нефтяной залежи. Наличие пустот в коллекторе называется пористостью. Значение пористости определяется коэффициентом пористости, т.е. отношением общего объема всех пустот в породе к геометрическому объему породы с пустотами. С увеличением глубины залегания пород пористость обычно уменьшается.
Нефтенасыщенность - отношение объема пор в залежи, заполненных нефтью, к общему объему пор.
Проницаемость горных пород характеризует их способность пропускать через себя жидкость и газ.
Абсолютная или физическая проницаемость - это проницаемость пористой среды при движении в ней какой-либо одной фазы - газа или однородной жидкости без физико-химического взаимодействия между жидкостью и пористой средой и при условии полного заполнения пор среды газом или жидкостью.
Эффективная (фазовая) проницаемость - проницаемость пористой среды для данного газа или жидкости при содержании в порах другой фазы - жидкой или газовой.
Относительная проницаемость - отношение эффективной проницаемости к абсолютной.
Упругость горных пород - способность их к изменению своего объема с изменением давления. Она влияет на перераспределение давления в пласте в процессе эксплуатации.
Внутреннее давление в пласте в процессе добычи нефти из залежи снижается, что приводит к уменьшению объема, а следовательно, к вытеснению из него жидкости и газа.
Карбонатность горных пород - суммарное содержание в них солей угольной кислоты: соды, поташа, известняка, доломита, сидерита и др. Значение этой величины является основой для выбора средств воздействия на них. Так, например, соляная кислота растворяет карбонаты, увеличивая число пор и поровых каналов, что приводит к возрастанию проницаемости.
Для получения притока нефти и газа к забоям скважин, которые вскрыли нефтяную залежь, необходим перепад давления между пластовым давлением и давлением на забое, создаваемым столбом жидкости и газа в скважине. Этот перепад давления называется депрессией. Количество жидкости, поступающей в скважину в единицу времени, т.е. дебит скважины, зависит от пластового давления, значений всех сопротивлений движению жидкости и депрессии.
1.2. Состояние жидкостей и газов в пластовых условиях
Пластовая жидкость может двигаться к забоям скважин под действием: напора краевых (контурных) вод; напора газовой шапки; энергии сжатого газа газонефтяной смеси; упругих сил нефти, воды и вмещающей их породы; сил гравитации (тяжести) жидкости.
Забой добывающей скважины является местом, куда вследствие пониженного давления стремится краевая вода и нефть, заполняя освобожденные поры пласта.
Газ газовой шапки давит на поверхность газонефтяного контакта и вытесняет нефть к забою скважины, при этом газовая шапка увеличивается в объеме.
Снижение пластового давления вызывает выделение из нефти растворенного в ней газа, последний расширяется и приводит в движение нефть в направлении забоя скважины.
По мере извлечения нефти и газа из пласта за счет упругих сил нефти, воды, газа, а также вмещающей их породы, происходит снижение пластового давления. Это приводит к сокращению объема порового пространства, что является дополнительным источником энергии движения нефти к забою скважины.
Под действием сил гравитации (тяжести) нефть перемещается из повышенных частей пласта к забою скважин, расположенных ниже.
Силами сопротивления движению нефти по пласту являются силы трения, гидравлические сопротивления, силы адгезии (прилипания) нефти к породе и капиллярные (молекулярноповерхностные) силы, удерживающие нефть.
Основное сопротивление движению нефти создают силы трения внутри жидкости и о стенки поровых каналов. Силы трения зависят от вязкости жидкости и проницаемости породы при заданных давлениях и температуре пласта.
При двух- и трехфазном движении, т.е. при совместном движении нефти и газа или нефти, газа и воды, газ запирает (закупоривает) поры, что препятствует движению нефти.
Явление адгезии (прилипания) нефти к породе проявляется в том, что нефть при контакте с поверхностью породы остается на ее поверхности при свободном истечении ее под действием силы тяжести в виде пленки.
Капиллярные (молекулярно-поверхностные) силы проявляются на границе нефти и воды. Чтобы привести в движение нефть на контакте с водой, в пласте следует создать перепад давления, превышающий капиллярные силы, равные уравновешивающей силе тяжести.
В пластовых условиях жидкость и газ, насыщающие поро-вое пространство коллекторов, как и сами коллекторы, находятся под давлением, которое называется пластовым.
Пластовое давление в различных точках залежей переменно, поэтому его определяют как средневзвешенное значение (при одинаковой глубине) по всем скважинам данного пласта и в дальнейшем именуют приведенным. Пластовое давление рассчитывают по картам изобар.
Начальное пластовое давление обычно соответствует гидростатическому давлению столба воды в скважине до глубины залегания данного пласта. Если пластовое давление значительно отличается от гидростатического, то говорят об аномально высоком или аномально низком пластовом давлении.
Температура нефти или газа в пластовых условиях называется пластовой температурой. Она возрастает с увеличением глубины скважины. Повышение температуры пласта на 1 °С в метрах от устья скважины (по вертикали) называется геотермической ступенью. Изменение температуры на каждые 100 м углубления в недра называется геотермическим градиентом. В среднем геотермический градиент равен 3 °С.
Забойное давление - давление, поддерживаемое на забое скважины в процессе эксплуатации. Для притока продукции из пласта в скважину необходимо, чтобы забойное давление было меньше пластового.
Давление на устье скважины в насосно-компрессорных трубах (НКТ) называется устьевым или буферным.
Давление в затрубном пространстве между насосно-компрессорными трубами и эксплуатационной колонной называется затрубным.
Статическим уровнем называется расстояние от устья до уровня жидкости в остановленной скважине.
Уровень жидкости в затрубном пространстве при эксплуатации скважины называется динамическим.
Геолого-энергетическая характеристика залежи определяет режим ее дренирования. В зависимости от темпа отбора жидкости и газа можно получить эффект вытеснения нефти водой или газом или за счет расхода энергии газа, растворенного в нефти. Поэтому режим дренирования залежи можно классифицировать как режим вытеснения нефти водой или газом; режим истощения внутренней газовой энергии залежи.
1.3. Химико-физические свойства нефти, пластовой воды и газа
Плотность (удельный вес) - одна из основных характеристик нефтей. Диапазон ее изменения - 750-1000 кг/м3. На практике иногда используют относительную плотность, т.е. безразмерную величину отношения плотности нефти (нефтепродукта) при стандартной температуре 20 °С к плотности дистиллированной воды при стандартной температуре 4 °С.
Плотность обычно измеряют с помощью ареометров. Для более точного определения плотности нефти в лабораториях пользуются весами Вестфаля и пикнометром. Плотность измеряют в пластовых и поверхностных условиях. Плотность нефти в поверхностных условиях всегда выше вследствие разгази-рования.
Вязкость - свойство жидкости (газа) оказывать сопротивление перемещению одних ее частиц относительно других (внутреннее трение). Различают динамическую (абсолютную), кинематическую и условную вязкость.
Кинематическая вязкость - отношение динамической вязкости к плотности жидкости. Единицы вязкости в СИ: динамическая - Н-с/м2 = Па-с; кинематическая - м2/с. Условная вязкость - отношение времени истечения из вискозиметра определенного объема жидкости ко времени истечения такого же объема дистиллированной воды при 20 °С. (Иногда встречаются устаревшие условные единицы -градусы Энглера (°Е) и Барбы (°В), секунды Сейболта ("S) и Редвуда ("R).)
Вязкость является важнейшим физическим свойством нефти, определяющим ее движение в пластовых условиях и при транспортировке ее по трубопроводам. Вязкость измеряют с помощью вискозиметров. С увеличением температуры вязкость нефти уменьшается, а с повышением давления - незначительно увеличивается. Вязкость пластовых нефтей возрастает при давлении ниже давления насыщения из-за разгазирова-ния. Обычно вязкость нефти равняется 0,5-25 мПа - с (более 15 мПа - с - повышенная вязкость). Вязкость разгазированных нефтей значительно выше пластовых (в 3-15 раз). Вязкость газов заметно увеличивается с повышением давления и температуры.
Одним из физических свойств нефтей и нефтепродуктов является их испаряемость. Испарение - это процесс перехода жидкости у поверхности на открытом воздухе из жидкого состояния в парообразное. Это свойство нефти и нефтепродуктов необходимо учитывать в системах сбора и транспорта нефти на месторождениях.
Давление паров данной жидкости, находящихся в равновесии с ней, называют упругостью паров жидкости.
Важнейшим свойством нефти является давление насыщения нефти газом, при котором определенный объем газа находится в растворенном состоянии в нефти.
Количество газа, приходящегося на 1 т нефти, называется газовым фактором.
Процесс растворения газа в нефти определяет распределение компонентов нефтяного газа между жидкой и газообразной фазами в нефтяной залежи. Весовая концентрация газа, растворяющегося в жидкости, пропорциональна его абсолютному давлению (при постоянной температуре) по закону Генри
К = аР^
где Vг - объем поглощенного газа (приведенный к атмосферному давлению); а - коэффициент растворимости газа; р - абсолютное давление газа; Кж - объем жидкости, в которой растворяется газ.
Кривые растворимости реальных газов отличаются от кривых по закону Генри.
Количественные показатели растворимости газа зависят также и от способа дегазирования нефти - контактного и дифференциального. В первом случае весь выделившийся газ (при снижении давления) до конца процесса остается в контакте с жидкостью. Во втором - выделяющийся газ периодически удаляется из системы. В пластовых условиях при снижении давления этот процесс ближе к контактному дегазированию.
Уменьшение объема нефти при ее дегазировании в промысловой практике называется "усадкой" нефти. Коэффициент "усадки" нефти определяется как отношение плотности общего объема насыщенной газом нефти (отнесенной к атмосферным условиям) к плотности насыщенной газом нефти в пластовых условиях. Отношение 1 м3 нефти* в пластовых условиях к 1 м3 нефти в атмосферных условиях называется объемным коэффициентом для нефти.
Нефть и газ состоят из смеси различных углеводородных и неуглеводородных соединений. Углеводородные соединения -парафиновые, нафтеновые и ароматические (редко олефино-вые) группы углеводородов. Неуглеводородные соединения -кислородные, сернистые и азотистые соединения.
Основными химическими элементами нефти являются углерод (82-87 % по весу) и водород (11-15 % по весу). В небольших количествах в нефти могут содержаться кислород (до 1,5 % по весу), сера (0,1 -7,0 % по весу и более) и азот (до 2,2 % по весу); в еще меньших количествах присутствуют минеральные примеси - хлор, йод, бром, фосфор, мышьяк, калий, натрий, кальций, магний, ванадий, кремний, железо, никель и др.
Для характеристики нефтей и нефтепродуктов используют показатели температуры вспышки, воспламенения, самовоспламенения, плавления и застывания.
Смесь паров нагреваемого нефтепродукта и воздуха вспыхивает при поднесении к ней огня при температуре, которая называется температурой вспышки. При этом вспыхнувшее пламя мгновенно затухает. Температура вспышки ниже, если легче фракция нефти. Температуры вспышки, например, бензиновых фракций составляют 40 °С, керосиновых от 28 до 60 °С, масляных от 130 до 325 °С. При температуре вспышки можно определить чистоту полученных фракций нефти и возможность образования взрывчатых смесей.
После определения температуры вспышки нефтепродукта при поднесении огня его пары вновь загораются и не гаснут в течение некоторого времени. Эта температура называется температурой воспламенения.
Температурой самовоспламенения называется температура, при которой нефтепродукт при контакте с воздухом самопроизвольно воспламеняется. Наиболее легко самовоспламеняются высококипящие нефтепродукты (300-350 °С).
Температурой плавления твердых нефтепродуктов (парафина и церезина) называется температура их перехода из твердого состояния в жидкое (в определенных условиях).
Температурой застывания называется температура, при которой (в определенных условиях испытания) нефтепродукт теряет подвижность. Температура застывания в основном зависит от содержания парафинов и церезинов в нефти. Они являются важным показателем при транспорте и использовании нефтепродуктов при низких температурах.
Отметим электрические свойства нефтепродуктов. Нефтепродукты плохо проводят электрический ток. Некоторые из них используются как изоляторы - парафин, трансформаторное, конденсаторное масло и др. Электровозбудимость - свойство нефтепродуктов удерживать электрический заряд при движении нефтепродуктов в сосудах, трубопроводах и т.п. Для снятия электрических зарядов необходимо заземлять все устройства, по которым транспортируются нефтепродукты.
Фракционный состав нефти - процентное содержание в ней различных фракций, выкипающих в определенных температурных пределах при ее перегонке. При различных температурах (температуре начала и конца кипения) определяют количество и качество составных частей нефти (фракций-дистиллятов). После обработки дистиллятов различные нефтепродукты получают в виде товарной продукции.
Товарные свойства нефтей определяются технологической классификацией. Она предусматривает показатели оценки нефтей: содержание серы в нефтепродуктах; содержание фракций, которые вскипают до 350 °С, содержание базовых масел и их качество; содержание парафина; индекс вязкости.
В табл. 1.1 приводится принятая технологическая классификация нефтей. Подготовленная нефть должна иметь показатели, соответствующие табл. 1.2.
В поровом пространстве нефтяной залежи вместе с нефтью и газом обычно находится вода. Часть воды в процессе эксплуатации скважин остается неподвижной. Такую воду называют "связанной" (с породой), "реликтовой", "погребенной", "остаточной". Эта вода может заполнить до 20 % объема пор и более. Остальная вода может выноситься к забоям скважин и подниматься на поверхность вместе с нефтью и газом. На практике такую воду именуют "пластовой".
Пластовые воды по степени полезности делятся на соленые, слабосоленые и пресные. Минеральные вещества (растворенные соли) натрия, калия, магния, железа, йода, брома и других определяют их общую минерализацию. Из газообразных веществ в пластовые воды входят углеводородные газы и иногда значительное (до 25 %) количество сероводорода.
Относительно нефтегазоносных горизонтов пластовые воды подразделяются на следующие виды:
контурные (краевые) - воды в пониженных участках нефтяных пластов, подпирающие нефтяную залежь со стороны контура нефтеносности;
верхние контурные (верхние краевые) - в случае, если ненефтеносная часть пласта выведена на поверхность и заполнена поверхностными водами;
подошвенные - воды в нижней части приконтурной зоны пласта; иногда они распространены по всей структуре, включая и ее сводовую часть;
промежуточные - воды, залегающие в пропластках нефтяных или газовых пластов;
верхние - воды, залегающие выше данного нефтяного (газового) пласта;
нижние - воды, залегающие ниже данного нефтяного (газового) пласта;
смешанные - воды, залегающие выше данного нефтяного (газового) пласта и поступающие из нескольких водоносных пластов или поступающие из выше- и нижележащих водоносных пластов.
К особым видам пластовых вод можно отнести тектонические, шельфовые и технические. Тектонические воды могут поступать по тектоническим трещинам из пластов с более высоким напором. Шельфовые воды - подземные воды шельфо-14
Класс | По содержанию серы | По выходу светлых нефтепродуктов | По содержанию базовых масел |
По индексу вязкости | По содержанию парафинов | |||||||||||
Нефти |
Массовая | доля серы, % | Тип | Выход фракций до 350 °С, % |
Груп па |
Массовая доля базовых масел, % | Под- груп па | Ин декс вязко сти базо вых масел |
Вид | Нефти | Мас совая доля пара фина нефти, % | |||||
нефти | бензине (н.к. 200 °С) |
в реактивном топливе (н.к. 120240 °С) | в дизель-ном топливе (н.к. 240350 °С) | |||||||||||||
на нефть | на мазут выше 350 °С | |||||||||||||||
I |
Малосер | 0,50 |
0,15 | 0,10 | 0,20 |
т, | 45 |
М. | 25 | 45 |
И1 | 85 |
П1 | Малопара- |
До 1,50 | |
нистые | финистые |
|||||||||||||||
II |
Се рни- | 0,51- | 0,15 | 0,25 | 1,0 |
т, | 30- | М2 | 15- | 45 |
И2 | 40- | П2 | Парафи- | 1,51-6,0 |
|
стые |
2,0 |
44,9 | 25 | 85 | нистые | |||||||||||
III | Высоко- | >2,0 |
0,15 | 0,25 | 1,0 | Тз | <30 |
М3 | 15- | 30- | - | - |
П3 | Высокопа- |
>6,0 | |
серни- | 25 | 45 | рафини- |
|||||||||||||
стые | стые | |||||||||||||||
М4 |
15 | <30 | - | - | - | |||||||||||
П р и м е ч а н и е . н.к | . - начало кипения. |
Т а б л и ц а 1.2
Показатели степени подготовки нефти по ГОСТ 9965-76 с изменениями на 01.01.90
Показатель | Норма для группы | ||
1 | 2 | 3 | |
Концентрация хлористых солей, мг/дм3, не более |
100 | 300 | 900 |
Массовая доля воды, %, не более | 0,5 | 1,0 |
1,0 |
Массовая доля механических примесей, %, не более |
0,05 | 0,05 | 0,05 |
Давление насыщения паров, кПа (мм рт. ст.), не более | 66,7 |
66,7 | 66,7 |
(500) | (500) |
(500) |
вых частей материков, т.е. прибрежных частей дна Мирового океана. Техническая вода попадает в нефтегазовые пласты (особенно с низким пластовым давлением) при бурении скважин и ремонтных работах при эксплуатации скважин.
Основные физические показатели пластовых вод: плот
ность, соленость, минерализация, вязкость, температура, электропроводность, сжимаемость, радиоактивность, растворимость воды в нефти и газов в воде.
Попутный нефтяной газ содержит большое количество пропана, бутана и более тяжелых углеводородов. В зависимости от этого попутные газы можно условно разделить на три категории:
бедные или сухие, содержащие до 50 г/м3 тяжелых углеводородов (от пропана и выше);
средней жирности, содержащие от 50 до 400 г/м3 тяжелых углеводородов;
жирные, содержащие свыше 400 г/м3 тяжелых углеводородов.
Большинство попутных газов из категории жирных. С легкой нефтью обычно добывают более жирные газы, с тяжелыми нефтями - в основном сухие газы.
Пропан и бутан легко сжижаются при небольших давлениях. Например, давление паров пропана при температуре 20 °С составляет 0,83 МПа. В пластовых условиях распределение каждого углеводорода между жидкой и газообразной фазами будет находиться в соответствии с давлением паров при данной температуре. Газ в пластовых условиях находится в различных состояниях в зависимости от давления насыщения - свободном, растворенном, адсорбированном. Основные физические показатели - плотность, вязкость, растворимость, сжимаемость. Плотность свободного газа по отношению к плотности воздуха называется относительной плотностью газа.
1.4. Физические свойства горных пород-коллекторов нефти и газа
Скопление нефти и газа наблюдается лишь в осадочных породах, которые образуются путем осаждения вещества в воде, а также из воздуха. Осаждение может быть механического, химического и биогенного типов. Поэтому осадочные породы могут быть обломочными (галечники, гравий, песчаники, глины, аргиллиты), хемогенными (каменная соль, ангидрит, гипс, доломиты) и биогенными (известняки-ракушечники, мел, уголь, сланцы). Поверхность земли более чем на 3/4 состоит из осадочных пород.
Наиболее распространенными коллекторами нефти и газа являются песчаники, глины и алевролиты.
Песчаник - обломочная осадочная горная порода из сцементированного песка. Он состоит в основном из зерен кварца, часто с примесью полевого шпата. Обычный диапазон размеров зерен песчаника 0,1-2 мм.
Глины кроме обломочного материала (мельчайших зерен кварца, слюидов, шпатов) содержат глинистые материалы химического разложения магматических пород и откладываются в водной среде. Обычно частицы глины размером менее 0,01 мм.
Алевролиты - осадочные породы в виде мелких обломков (0,01-0,1 мм), сцементированные в плотные горные породы. Хемогенные породы состоят из минералов того же названия. Биогенные породы образуются путем накопления органических остатков животных и растений, а также продуктов и х жизнедеятельности.
Осадочная толща земной коры состоит из различных слоев горных пород (пластов). Пласт - геологическое тело относительно однородного состава. Поверхность, ограничивающая пласт снизу, называется подошвой, поверхность, ограничивающая его сверху, - кровлей.
Толщина пласта обычно во много раз меньше его протяженности.
В основном преобладают горизонтальные слои. В результате тектонических давлений (сдвигов) земной коры они могут быть наклонены, смяты в складки и разорваны. При этом образуются различные структурные формы (структуры). Складка слоев горных пород, обращенная вверх, называется антиклиналью. Типичным случаем расположения нефти и газа является антиклиналь, где в верхней части пласта располагается свободный газ (газовая шапка), внизу вода, а между ними нефть.
Поверхность, разделяющая нефть и воду или нефть и газ, называется соответственно водонефтяным или газонефтяным контактом (ВНК или ГНК).
1.5. Нефтеотдача при различных режимах эксплуатации залежей
В результате эксплуатации нефтяных скважин на поверхность извлекается только часть запасов нефти в пластах. Отношение извлеченного из залежи количества нефти к ее первоначальным запасам называется коэффициентом нефтеотдачи.
Различают текущий и конечный коэффициент нефтеотдачи. В первом случае он определяется конкретной датой (временем) разработки, а во втором - в конце периода эксплуатации. Прекращение эксплуатации или "выбытие" ("списание") скважин из эксплуатационного фонда приурочено к предельной обводненности (90-99 %) продукции или малым дебитам нефти.
Значения предельной обводненности и предельных дебитов определяются экономической целесообразностью разработки нефтяной залежи.
Коэффициент нефтеотдачи зависит от многих факторов: режима работы залежи, физических свойств пород и пластовых жидкостей, систем разработки залежи и т.д. Во многих случаях нефтеотдача определяется в первую очередь режимом работы залежи, т.е. ее геолого-промысловой характеристикой.
В случае вытеснения нефти водой (водонапорный режим) объем залежи, занимаемый нефтью, непрерывно уменьшается. Перед фронтом воды движется все время в основном одна фаза - нефть, в связи с чем эффективная проницаемость породы для нефти все время остается достаточно высокой. Это дает значительный эффект вытеснения, достигающего 70-80 %. Такого же значения нефтеотдачи можно достичь при газонапорном режиме (режим газовой шапки).
При работе залежи с газовым режимом (режим растворенного газа) снижение пластового давления ведет к выделению из нефти растворенного газа, что приводит к росту газонасы-щения породы и тем самым уменьшению эффективной проницаемости ее для нефти. Поэтому процесс истощения газовой энергии малоэффективен. Так, при газонасыщенности породы более 35 % наблюдается движение только газа. В конечном итоге коэффициент нефтеотдачи при этом составляет 1030 %.
Каждый режим характеризуется определенными показателями в процессе эксплуатации залежи. Такими показателями являются обычно пластовое давление (отнесенное к начальному контуру нефтеносности или среднее по площади) и газовый фактор. Эти показатели зависят в основном от темпов отбора и энергетической характеристики залежи. Отсюда становится ясной задача восполнения пластовой энергии путем закачки воды или газа, о чем будет указано ниже. Проекты разработки месторождения ориентируются на среднюю нефтеотдачу 4050 %.
В настоящее время везде, где позволяют геологические условия и это целесообразно с экономической точки зрения, создается искусственный водонапорный режим. Более 80 % нефти в стране добывается из месторождений, на которых осуществляется поддержание пластового давления с применением законтурного и внутриконтурного заводнения. Но и при водонапорном режиме коэффициент нефтеотдачи далек от единицы. При естественном водонапорном режиме коэффициент нефтеотдачи составляет 50-80 %, а при искусственном - 40-60 %. Основная причина неполного извлечения нефти из недр - действие капиллярных сил, проявляющихся при наличии межфазного натяжения на контакте нефть - вытесняющая жидкость.
Передвижение границы раздела нефть - вода происходит одновременно по нескольким поровым каналам разного сечения. В гидрофобной породе капиллярные силы препятствуют продвижению мениска, поэтому контакт нефть - вода быстрее передвигается по порам большого диаметра, оставляя нефть защемленной в мелких порах. В гидрофильной породе может наблюдаться и обратная картина: за счет капиллярных сил контакт быстрее перемещается в порах малого диаметра, а защемленная нефть остается в крупных порах. Нефть может оставаться в промытой части пласта также в виде пленок на стенках поровых каналов.
К уменьшению нефтеотдачи приводит и неоднородность пласта. Вода быстрее продвигается по хорошо проницаемым зонам и пропласткам, оставляя "целики" нефти на малопроницаемых участках. Этот процесс еще более усугубляется, когда вязкость вытесняющего агента меньше вязкости нефти, и чем больше различие в вязкости, тем меньше нефтеотдача.
При заводнении продуктивных пластов стараются уменьшить вредное влияние перечисленных факторов: за счет воздействия на призабойную зону пласта с целью выравнивания профилей притока и поглощения, регулирования режима работы нагнетательных и добывающих скважин, чтобы не допустить образования языков и конусов обводнения; одновременной раздельной эксплуатации продуктивных пластов и раздельной закачки воды, форсирования отбора, циклической закачки, изменения направления фильтрационных потоков.
Эффективность перечисленных методов воздействия недостаточна для сильно неоднородных пластов, особенно на месторождениях высоковязких нефтей. Поэтому в настоящее время все более широкое распространение получают новые методы увеличения нефтеотдачи (табл. 1.3).
Большинство из представленных методов направлено на
Метод увеличения нефтеотдачи |
Текущая нефтеотдача, % к балансовым запасам | Вязкость пластовой нефти, мПа-с |
Темпе ратура, °С |
Толщи на пласта, м |
Коэффи циент проницае мости, мкм2 |
Воздействие на призабойную зону пласта: растворами | 30 | 10-100 | До 90 | > 0,1 | |
полимеров мицеллярными | 70 |
До 10 | До 65 | _ |
> 0,1 |
растворами водными | 30 | До 50 | До 90 |
2_15 | > 0,015 |
растворами ПАВ растворами |
60 | До 100 | - | _ | > 0,1 |
щелочей серной кислотой | 30 | 1-30 | _ | _ | До 0,5 |
карбонизирован | 60 | До 100 |
До 60 | > 2 | > 0,05 |
ной водой двуокисью |
60 | До 50 | _ | До 15 | > 0,005 |
углерода жидкими |
15 | До 100 | До 40 | До 40 | _ |
растворителями обогащенным | 25 |
До 15 | _ | До 300 | До 0,15 |
газом сухим газом | 60 |
До 10 | _ | До 15 |
> 0,005 |
высокого давления горячей водой | 30 | > 15 | До 50 |
> 15 | > 0,1 |
паром | 30 | > 50 | До 50 | > 6 |
> 0,1 |
Внутрипластовое | 50 |
> 10 | _ | 3_30 |
> 0,1 |
горение Мощные | _ | До 100 | _ | > 60 |
До 0,15 |
внутрипластовые взрывы Вибросейсмическое | 30 |
30-200 | 2_50 |
> 0, 1 | |
воздействие (волновые методы) |
снижение межфазного натяжения на границе нефть - вытесняющий агент. Некоторые из этих методов приводят к ликвидации границы раздела фаз (закачка оторочек жидких и газообразных растворителей, растворение нефти в сухом газе высокого давления). Часть методов обладает комплексным воздействием. Так, закачка растворов поверхностно-активных веществ и мицеллярных растворов к тому же улучшает моющие свойства вытесняющего агента, тепловые методы и использование С02 приводят также к понижению вязкости нефти. Условия эффективного применения методов увеличения нефтеотдачи пластов являются ориентировочными, они изменяются с развитием техники и технологии методов воздействия.